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1. Introduction

The Pd-catalyzed intermolecular arylation of bicyclic olefins, first
demonstrated by Larock, is a powerful method to introduce func-
tionality into bicyclic ring systems.1 This exo selective reaction was
later exploited by Regan, where the hydroheteroarylation of a 7-aza-
bicyclo[2.2.1]heptene system afforded a concise synthesis of epi-
batidine.1b This methodology was further extended to epibatidine
analogs,1a,c,d other biologically active molecules,2 other bicyclic ole-
fins,3 and asymmetric variants.4 In most cases aryl or heteroaryl io-
dides or diazonium salts5 and symmetrical olefins are the preferred
substrates. A drawback of this methodology is that reductive aryla-
tion of unsymmetrical olefins often leads to mixtures of regioisom-
ers.1f,5,6 More recently, Abe et al. reported that they were not able
to effect hydroarylation of a 2-azabicyclo[2.2.1]hept-5-en-3-one
system. These authors, instead, turned to a Rh-catalyzed addition
of aryl boronic acids to 2-azabicyclo[2.2.1]hept-5-en-3-one (1) un-
der microwave irradiation.6 However, in a previous disclosure of
our work on the synthesis of azacyclic insecticides,7 we demon-
strated that 1 is a suitable substrate for the Pd-catalyzed hydroary-
lation reaction. We disclose herein, our expanded study of the
hydroarylation of 1 with a range of aryl iodides including an exami-
nation of factors influencing the regioselectivity of the reaction.

2. Results and discussion

The initial reaction between 1 and 1-chloro-4-iodobenzene (2a)
was conducted with a reaction stoichiometry of 5 mol % Pd-catalyst,
2 equiv of base, 1.4 equiv of formic acid, and 1.1 equiv of the iodoa-
rene (Scheme 1). 1H NMR analysis of the regioisomeric mixture of exo
products revealed that the chemical shift of the H1 proton was par-
ticularly diagnostic for identification of each isomer. Thus, the ratio
of isomers (5-aryl (3):6-aryl (4)) could be readily determined by
integration of the H1 proton where 3 (H1 = 4.04 ppm) and 4
(H1 = 3.88 ppm).8
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We briefly examined several reaction parameters to assess their
effect on the regioselectivity of the reaction of 1 and 2a. A survey
of bases (Et3N, iPr2NEt, piperidine) and palladium catalysts prepared
from palladium(II) acetate and ligands ranging from bulky, electron-
rich phosphines to mono- and bidentate ligands (none, Ph3P, (o-to-
lyl)3P, tBu3P, dppe, dppp, dppb, dppf, ArPhos), revealed no particular
influence on the regiochemical preference of the reaction. However,
a modest shift in the ratio of regioisomers was noted with change in
the solvent.9 Solvents with lower dielectric constants provided prod-
uct slightly enriched in 3, while solvents with higher dielectric
constants provided product slightly enriched in 4.10 Concentration
effects were also briefly considered. Two reactions, using benzene
and acetonitrile as solvents, were conducted at a concentration 10-
fold more dilute than the standard conditions. The product ratio
(3:4) from the reaction in dilute benzene was shifted toward 3 (entry
2). The product ratio (3:4) from the reaction in dilute acetonitrile re-
mained unchanged (entry 7 vs entry 6) (Table 1).11

The modest selectivity of the hydroarylation reaction between 1
and an aryl iodide led to, at times, an inseparable mixture of 5- and 6-
aryl regioisomers. In these cases, N-protection facilitated separation
of the regioisomers. Derivatization of the lactam was achieved by
employing a stoichiometric quantity of DMAP along with t-Boc2O
and TEA in dichloromethane.12 The t-Boc-protected 5-(4-chloro-
phenyl) (5a) and 6-(4-chlorophenyl) (6a) isomers were readily sep-
arated on silica gel using 10% ethyl acetate in hexane (Scheme 2).
These highly crystalline derivatives allowed for confirmation of the
regiochemistry of the hydroarylation by X-ray crystallography.

The ORTEP plot of the X-ray crystal structure of 5a (Fig. 1) con-
firmed the regiochemical assignment and the expected exo
stereochemistry.13
O O
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Scheme 1. Reagents: (a) ArI, (Ph3P)2PdCl2, HCO2H, base, solvent.
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Table 1
Solvent and concentration effects on the hydroarylation of 1 with 2aa

Entry Solvent/temp Dielectric constant Concentration
[M, lactam]

Ratio (3:4)b Yieldc

1 Benzene/70 �C 2.275 0.230 56:44 97
2 Benzene/70 �C 0.023 69:31 98
3 EtOAc/70 �C 6.02 0.230 53:47 94
4 THF/65 �C 7.58 0.230 57:43 100
5 DMF/65 �C 36.71 0.230 38:62 88
6 CH3CN/60 �C 37.5 0.230 40:60 85
7 CH3CN/60 �C 0.023 39:61 82
8 NMA/65 �C 191.3 0.230 39:61 92

a 5 mol % Pd(PPh3)2Cl2, 2 equiv Et3N, 1.4 equiv HCO2H, 1.1 equiv iodoarene.
b Based on integration of the H1 proton.
c Isolated; after purification by chromatography.
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Scheme 2. Reagents: (a) 1.1 equiv DMAP, Et3N, tBOC2O, CH2Cl2.

Table 2
Hydroarylation of 1 with aryl iodides 2a

Entry Aryl iodide (2) Ratio (3:4)b Yieldc Time

1 2b Phenyl 56:44 93 16
2 2c 4-Methoxyphenyl 50:50 98 19
3 2d 3,5-Dichlorophenyl 55:45 95 19
4 2e 3-Trifluoromethylphenyl 56:44 91 16
5 2f 4-Methylphenyl 57:43 92 15
6 2g 3-Methoxyphenyl 53:47 98 15
7 2h 6-Chloro-3-pyridinyl 50:50 59 36

a 5 mol % Pd(PPh3)2Cl2, 2 equiv Et3N, 1.4 equiv HCO2H, 1.1 equiv iodoarene, THF
65 �C.

b Based on integration of the H1 proton.
c Isolated; after purification by chromatography.
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A number of electron rich and electron poor aryl iodides (2b–g),
as well as a heteroaryl iodide (2h), were used in the hydroarylation
reaction using the standard conditions to afford mixtures of regio-
isomeric lactams in good yields (59–98%, Table 2). Aryl bromides
could be used (data not shown) but this resulted in lower yields
of products and longer reaction times.14 Aryl triflates failed to pro-
vide any products.

3. Typical experimental procedures15

2-Azabicyclo[2.2.1]hept-5-en-3-one 1 (0.50 g, 4.58 mmol), 1-
chloro-4-iodobenzene 2a (1.20 g, 5.04 mmol) and bis(triphenyl-
phosphine)palladium chloride (0.16 g, 0.23 mmol) were dissolved
in 20 mL tetrahydrofuran. Triethylamine (1.3 mL, 9.16 mmol) was
added followed by dropwise addition of formic acid (0.25 mL,
6.41 mmol). The reaction mixture was heated under reflux for
16 h, then cooled to room temperature. The reaction was diluted
with ethyl acetate and 1 N HCl. The layers were separated and
Figure 1. ORTEP plot of 5a.
the aqueous layer was extracted with ethyl acetate. The combined
organic layers were dried (MgSO4), filtered, and concentrated. The
residue was purified by flash chromatography (silica gel, ethyl ace-
tate) to afford 1.02 g (100%) of 3a:4a as a 57:43 mixture (NMR) of
exo-regioisomers. 1H NMR (400 MHz, CDCl3) d 7.35–7.25 (m, 2H),
7.23–7.05 (m, 2H), 5.85 and 5.75 (br s, 1H), 4.04 (s, 0.57H), 3.88
(s, 0.43H), 3.35–3.20 (m, 1H), 2.88–2.82 (overlapping s, 1H),
2.30–2.15 (m, 1H), 2.05–1.95 (m, 2H), 1.80–1.70 (m, 1H). Anal.
Calcd for C12H12NOCl (221.69): C, 65.02; H, 5.46; N, 6.32. Found:
C, 64.82; H, 5.40; N, 6.05.

To a solution of 5/6-(4-chlorophenyl)azabicyclo-[2.2.1]heptan-
3-ones 3a/4a (1.09 g, 4.9 mmol) in 20 mL anhydrous dichlorometh-
ane was added triethylamine (1.70 mL, 2.5 equiv) and DMAP
(0.61 g. 5.0 mmol), followed by di-tert butyl dicarbonate (2.15 g,
9.8 mmol) in small portions. After 4 days, the mixture was concen-
trated to dryness and purified by chromatography (ISCO, 40 g col-
umn, heptane/EA gradient) to afford 430 mg (27%) of 5a and
690 mg (44%) of 6a, along with some mixed fractions. Both com-
pounds were recrystallized from heptane. Compound 5a: 1H
NMR (400 MHz, CDCl3) d 7.27 (d, 2H, J = 8.6 Hz), 7.13 (d, 2H,
J = 8.2 Hz), 4.62 (br s, 1H), 3.37 (dd, 1H, J = 5.5, 9.2 Hz), 2.93 (dd,
1H, J = 1.5, 0.8 Hz), 2.37 (ddd, 1H, J = 2.3, 9.2, 11.5 Hz), 2.02–1.93
(m, 2H), 1.73 (ddd, 1H, J = 1.4, 1.4, 10.3 Hz), 1.52 (s, 9H). Compound
6a: 1H NMR (400 MHz, CDCl3) d 7.30 (d, 2H, J = 8.4 Hz), 7.18 (d, 2H,
J = 8.4 Hz), 4.46 (br s, 1H), 3.37–3.30 (m, 1H), 2.96–2.92 (m, 1H),
2.29–2.09 (m, 2H), 1.88 (d, 1H, J = 10.3 Hz), 1.65 (d, 1H,
J = 10.5 Hz), 1.54 (s, 9H).

In conclusion, we have demonstrated a facile hydroarylation
reaction of 1 with aryl iodides. Several reaction parameters were
investigated resulting in conditions that allow for a slight regio-
chemical bias in the arylated products. The reaction is scalable,
and only limited by the availability of the aryl iodide substrates. Fu-
ture work, describing the ability to convert these lactams into a
range of stereochemically defined amines, will be reported in due
course.
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